杏盛

杏盛网站xml地图

学术信息

上一篇:下一篇🧛🏻‍♀️:
热门文章

关于西班牙巴塞罗那自治大学Manuel de Leon教授和北京大学韦屏远博士后学术讲座的预告

作者:发布时间:2023年11月09日 20时22分

应数学与计算科学学院♥️、广西应用数学中心(杏盛 -(杏盛招商盛启,共创辉煌】)及广西高校数据分析与计算重点实验室邀请👨🏿‍🏭,西班牙巴塞罗那自治大学Manuel de Leon教授和北京大学韦屏远博士将于2023年11月10日来校讲学,欢迎全校师生踊跃参加🏊。报告具体安排如下👨‍👩‍👧‍👧:

时间🦐🦸‍♀️:2023年11月10日(星期五)下午16:00

地点:花江校区第6教学楼306报告厅


报告题目一♥︎:The role of symmetry in conservative dynamics

主讲人:Manuel de Leon

报告摘要:

The interplay between of symmetry and conservative dynamics will be explored, both in Hamiltonian and Lagrangian formulation. Several examples, both finite and infinite dimensional, will be presented.

主讲人简介🦑:

Manuel de Leon🟦,西班牙巴塞罗那自治大学教授,西班牙科学院院士🧜,担任《Journal of Geometric Mechanics》等期刊的主编🦹🏻‍♀️🧚🏿。主要研究方向包括:微分几何与辛几何、泊松流形、非完整力学以及最优控制理论等。


报告题目二2️⃣:Stochastic Hamiltonian Systems: Geometric Structure and Averaging Principle

主讲人:韦屏远

报告摘要😬:

The generalization of classical geometric mechanics (including the study of symmetries, Hamiltonian and Lagrangian mechanics, and the Hamilton-Jacobi theory, etc.) to the context of stochastic dynamics has drawn more and more attention in recent decades.

In this talk, we generalize the systems of Hamiltonian diffusions, which were introduced and studied by J.M. Bismut, to accommodate arbitrary Jacobi manifolds as phase spaces and general continuous semimartingales as forcing noises. We first show that such systems preserve characteristic leaves and structures. Based on these properties, we further investigate the effective behavior of a small transversal perturbation to a completely integrable stochastic Hamiltonian system with non-Gaussian Lévy noise. More precisely, we establish an averaging principle in the sense that the action component of solution converges to the solution of a stochastic differential equation when the scale parameter goes to zero.

主讲人简介:

韦屏远,北京大学北京国际数学研究中心博士后🧑🏼‍🎓👨🏼‍💼、助理研究员。2021年毕业于华中科技大学统计学专业🪴🤽🏽‍♀️,获理学博士学位。博士学习期间🍯,曾受校际研修项目资助,于2019年至2020年间赴美国佐治亚理工学院进行联合培养。研究兴趣涉及(高斯及非高斯)随机哈密顿系统🪠、随机扰动理论及其应用等🥌。研究成果主要发表在Physica D, Chaos, J.Math.Phys., Appl. Math. Comput.等国际重要期刊。获有中国博士后科学基金站前特别资助及面上资助。


杏盛